Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123712, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460593

RESUMO

Humic acid (HA) from different organic solid waste (OSW) compost has been shown good adsorption properties for phenanthrene. However, the raw material of HA can affect its structure, resulting in differences in adsorption capacity. Therefore, this study focused on the adsorption characteristics of phenanthrene by HA from different OSW compost. In this work, chicken manure (CM), rice straw (RS) and lawn waste (LW) were selected as sources of composted HA. The adsorption mechanism of HA from different OSW compost were revealed through analytical techniques including three-dimensional fluorescence spectroscopy (EEM), two-dimensional correlation spectroscopy (2DCOS), and Fourier-transform infrared spectroscopy (FTIR). The results suggested that HA from LW compost had a better adsorption affinity for phenanthrene because of its more complex fluorescent component, where C1 as a simple component determined the adsorption process specifically. Furthermore, after HA from LW compost adsorbed phenanthrene, the increase in aromatic -COOH and -NH was the main reason for fluorescence quenching. These results indicated that HA from LW compost had better adsorption effect for phenanthrene. The results of this study were expected to provide a selection scheme for the control of phenanthrene pollution and environmental remediation.


Assuntos
Compostagem , Fenantrenos , Substâncias Húmicas/análise , Solo/química , Resíduos Sólidos , Adsorção , Espectrometria de Fluorescência , Fenantrenos/química
2.
Environ Pollut ; 322: 121236, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758929

RESUMO

Metal pollution caused by industrial waste accumulation is a long-term and far-reaching problem. Humin (HM), as a highly condensed organic component insoluble in alkaline or water solution, is often discarded as humic acid industrial waste. However, the abundant active functional groups in HM reported by some researches make it possible for HM to remove metals. In this study, a waste reuse strategy was proposed to reduce the pressure of industrial metal pollution on the environment. HM was obtained from lignite waste residue. Scanning electron microscopy, energy spectrum and Fourier infrared spectroscopy, combined with the adsorption models were employed to reveal the mechanism of HM adsorption. The results showed that HM had multiple adsorption mechanism and high biological stability. The adsorption capacity of HM to Zn2+ and Pb2+ were 194.88 mg/g and 289.59 mg/g respectively. HM adsorbed Zn2+ mainly by physical multilayer adsorption. And the adsorption of Pb2+ by HM was mainly a monolayer chemical reaction, which depended on its active functional groups and the exchange of valence electrons. Notably, HM could simultaneously remove Pb2+ and Zn2+ and almost did not affect its original adsorption capacity to single ions. These results will provide a new strategy for the treatment of metal pollution in the future and alleviate the pressure of multiple metal pollution of the environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Substâncias Húmicas , Resíduos Industriais , Chumbo , Zinco/química , Adsorção , Metais Pesados/análise , Poluentes Químicos da Água/química
3.
Bioresour Technol ; 361: 127721, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914672

RESUMO

In this study, nitrogen transformation of chicken manure (CM) and cattle dung (CD) during composting was analyzed and its related functional keystones were identified. The results showed that chicken manure showed more severe nitrogen conversion during composting. The main N conversion factors in cattle dung were nitrite nitrogen (NO2--N) and ammonium nitrogen (NH4+-N), while the main N conversion factors in chicken manure were NH4+-N and nitrate nitrogen (NO3--N). The nitrogen-transforming bacterial community in chicken manure was more diverse. Variations in functional keystone abundances in cattle dung tended to be confined to the cooling and maturation periods, whereas changes in chicken manure persisted throughout the composting process. Environmental factors affected the functional keystones of nitrogen transformation. This study may provide directions for regulating nitrogen conversion in animal manure composting.


Assuntos
Compostagem , Animais , Bovinos , Galinhas , Esterco , Nitrogênio , Solo
4.
Environ Pollut ; 307: 119595, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688387

RESUMO

Black carbon (BC) exports huge amounts of its derived DOM from terrestrial ecosystems annually through a variety of ways (i.e., erosion or runoff migration). The pyrolytic feedstock type and temperature resulted in DOM derived from highly condensed aromatic and non-aromatic BC. However, the behaviors of low aromatic BC-derived DOM at diverse leaching time are poorly understood. In this work, low aromatic BCs were prepared by pyrolysis corn straws at 250 °C, 350 °C and 450 °C. Extraction experiments for four leaching time (6 h, 10 h, 15 h and 21 h) were set up to simulate BC-derived DOM generative process in nature. The phytotoxicity of BC-derived DOM was evaluated via germination index (GI). Spectral characteristics were discussed to analyze the phytotoxicity variations of fluorescence components composition at different time, including the excitation-emission matrix-parallel factor, two-dimensional correlation spectra and Fourier transform infrared spectroscopy. The results suggested that low aromatic BC-derived DOM might contain aromatic phenolic compounds. A longer time contributed to accumulate the complex, hard-to-use organic matters, leading to lower GI. These results would supplement the dynamic spectral characteristics of low aromatic BC-derived DOM and its environmental risks during the leaching process.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Carbono/toxicidade , Substâncias Húmicas/análise , Compostos Orgânicos , Fuligem , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Bioresour Technol ; 359: 127472, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714775

RESUMO

This study aimed to explore the mechanism of actinomycetes inoculation to promote humification based on spectroscopy during straw waste composting. Results showed that inoculating actinomycetes could significantly increase the humification index and humification ratio, which were 2.53% and 21.79% respectively (P < 0.05). A spectroscopic analysis suggested that actinomycetes promoted the relative content of complex components of humic acid and reshaped the structural distribution of two sub fluorescence peaks in it. Furthermore, variance partitioning analysis demonstrated that compared with the intensity, the high-quality uniform distribution of fluorescence peaks had a greater contribution to the improvement of humification. In addition, structural equation model further verified that actinomycetes inoculation promoted the transformation of fulvic acid to humic acid, and then promoted the formation of humic acid. Therefore, actinomycetes inoculation can promote the humification of straw compost by reshaping the complex components of humic acid.


Assuntos
Actinobacteria , Inoculantes Agrícolas , Compostagem , Substâncias Húmicas/análise , Solo , Análise Espectral
6.
Bioresour Technol ; 353: 127149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427735

RESUMO

Mink manure is one of the high nitrogenous wastes, which can easily cause nitrogen mineralization during composting, resulting in low resource reutilization. However, there are few studies on the resource utilization of mink manure. Therefore, this study investigated the effects of functional microbial (bacterial and actinomycetes agents) inoculation on nitrogen mineralization during mink manure composting. Results suggested that the inoculum, especially actinomycetes agents, could increase organic nitrogen and bioavailable organic nitrogen (BON) content. Principal component analysis and Random Forest model demonstrated that the inoculants increase the abundance of microorganisms that positively correlated with BON, decrease the microorganisms that negatively correlated with BON. Consequently, the inoculation of functional microbial agents could effectively reduce nitrogen mineralization and improve composting quality. Therefore, this study provided theoretical and technical support for optimizing mink manure composting, promoting the resource utilization of high nitrogen wastes.


Assuntos
Compostagem , Animais , Disponibilidade Biológica , Esterco/microbiologia , Vison , Nitrogênio , Solo
7.
Bioresour Technol ; 344(Pt A): 126198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710605

RESUMO

The main purpose of this study was to explore the effects of Fenton pretreatment combined with bacterial inoculation on humification characteristics of dissolved organic matter (DOM) during rice straw composting. Three treatment groups (Fenton pretreatment: FeW, Fenton pretreatment and bacterial inoculation: FeWI, control: CK) were carried out during composting. The results showed that total organic carbon concentration of DOM and HIX showed an increase trend in all treatments in the composting process. The fungi that affect DOM conversion showed remarkable effects, meanwhile, fungal numbers of influencing DOM conversion were higher for FeWI than CK and FeW. The contribution rate of fungi to DOM was greater than that of environmental factors in FeWI composting, while environmental factors accounted for a large proportion in FeW and CK composting. This study exhibits referential significance for the effective degradation of agricultural wastes.


Assuntos
Compostagem , Oryza , Agricultura , Matéria Orgânica Dissolvida , Solo
8.
Sci Total Environ ; 778: 146231, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714816

RESUMO

Dissolved organic matter (DOM) derived from black carbon (BC) can migrate from soil to river by rainfall or snow melting in nature. Because of the incomplete biomass combustion, BC produced at various temperatures is mixed, which is hard to divide the DOM at single temperature. Then it is difficult to explore the properties and risks of DOM in detail. Therefore, corn straws were selected to prepare BC under different heating temperature (200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). Germination index combined the excitation-emission matrix-parallel factor (PARAFAC) and two-dimensional correlation spectra was employed to clarify the phytotoxicity and the PARAFAC components of DOM derived from BC at single temperature. Results showed that BC was hard to dissolve in water, but most of its DOM were toxic. Heating temperature promoted the formation of simple and complex fluorescent components. Combined with volume integration, it is the complex peaks of fluorescent components to determine the phytotoxicity of DOM derived from BC. These results would help to build a deep understanding of the fluorescence characteristics and toxicity of BC at different temperatures and emphasize the importance of reducing straw by burning.


Assuntos
Rios , Solo , Carbono , Análise Fatorial , Substâncias Húmicas/análise , Fuligem , Espectrometria de Fluorescência
9.
Bioresour Technol ; 271: 66-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30265954

RESUMO

This study was conducted to assess the effect of thermophilic actinomycetes inoculation on the lignocellulose degradation, enzyme activities and microbial community during different types of straw composting from wheat, rice, corn and soybean. The results showed that actinomycetes inoculation not only changed the structure of actinomycetic and bacterial community but also accelerated the degradation of cellulose, hemicellulose and lignin and increased the key enzymes activities including CMCase, Xylanase, manganese peroxidase, lignin peroxidase and laccase during composting particularly from wheat straw and rice straw. The key enzyme and physiochemical parameters which affected organic fractions degradation have been identified by redundancy analysis. The combined application of actinomycete inoculation and urea addition as a source of nitrogen was suggested to regulate the key enzyme activities and lignocellulose degradation, which lays a foundation for effectively managing organic wastes from different types of crop straws by composting.


Assuntos
Actinobacteria/enzimologia , Compostagem , Lignina/metabolismo , Nitrogênio/metabolismo
10.
Bioresour Technol ; 269: 169-178, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172180

RESUMO

The aim of this study is to reveal the roles of MnO2 in Maillard reaction of biotic composting, and to identify its effectiveness in promoting humus formation. Corn straw (CS) and chicken manure (CM) have been chosen to be composted. During CS composting, addition of MnO2 rapidly reduced reducing sugars concentration (decreased by 84.0%) in 5 days and significantly improved humus production by 38.7% compared with treatment without MnO2. Whereas in CM composting, the promoting effect of MnO2 on humus formation was relatively weak by comparing with the treatment group of CS. Additionally, the presence of MnO2 has reshaped bacteria community, which might be the reason of MnO2 stimulated bacteria to utilize organic matter during CM composting. Therefore, the structural equation modeling has confirmed that MnO2 mainly performed as chemical catalyst to promote humus formation during CS composting. Besides catalyst, MnO2 also played as a bioactive activator in CM composting.


Assuntos
Compostagem , Compostos de Manganês/química , Óxidos/química , Solo/química , Animais , Galinhas , Esterco , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...